Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Preconditioning of thin-film PV module technologies for calibration

Identifieur interne : 000054 ( Main/Repository ); précédent : 000053; suivant : 000055

Preconditioning of thin-film PV module technologies for calibration

Auteurs : RBID : Pascal:14-0038068

Descripteurs français

English descriptors

Abstract

Thin-film module technologies are known for their metastability, and a study of this behaviour for different types of thin-film modules is presented. The modules investigated through a series of controlled light-soaking procedures are copper-indium sulfide (CIS), copper-indium-gallium diselenide (CIGS), cadmium telluride (CdTe), triple-junction amorphous silicon (a-Si), micromorph silicon (a-Si/μ-Si) and thin-film crystalline silicon (CSG). The objective of the paper is to investigate whether after the stabilization point, as defined in the international qualification standard IEC 61646, there is any further significant change in the maximum power of the module. It was found that all CIS and CIGS modules investigated in this study stabilize according to IEC 61646, and no further significant change in maximum power is observed. The same result was obtained also for the CSG module. To the contrary, CdTe, triple-junction a-Si and a-Si/μ-Si modules continued to show further change in maximum power even after they stabilize according to IEC 61646. For the purposes of module qualification, given the need to stay 'within reasonable constraints of cost and time', the stability procedure of IEC 61646 could be considered as satisfactory. However, in order to perform sufficient preconditioning of thin-film modules prior to precision calibration, a new more complete standard procedure is needed, tailored to the specific technology. For example, tighter stability limits lower than the current 2%, which would have the effect of increasing the number of light-soaking periods required.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0038068

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Preconditioning of thin-film PV module technologies for calibration</title>
<author>
<name sortKey="Kenny, Robert P" uniqKey="Kenny R">Robert P. Kenny</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Renewable Energy Unit, Institute for Energy and Transport, European Commission, DG Joint Research Centre</s1>
<s2>Ispra</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Italie</country>
<wicri:noRegion>Ispra</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chatzipanagi, Anatoli I" uniqKey="Chatzipanagi A">Anatoli I. Chatzipanagi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Renewable Energy Unit, Institute for Energy and Transport, European Commission, DG Joint Research Centre</s1>
<s2>Ispra</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Italie</country>
<wicri:noRegion>Ispra</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sample, Tony" uniqKey="Sample T">Tony Sample</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Renewable Energy Unit, Institute for Energy and Transport, European Commission, DG Joint Research Centre</s1>
<s2>Ispra</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Italie</country>
<wicri:noRegion>Ispra</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0038068</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0038068 INIST</idno>
<idno type="RBID">Pascal:14-0038068</idno>
<idno type="wicri:Area/Main/Corpus">000198</idno>
<idno type="wicri:Area/Main/Repository">000054</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1062-7995</idno>
<title level="j" type="abbreviated">Prog. photovolt. : (Print)</title>
<title level="j" type="main">Progress in photovoltaics : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amorphous material</term>
<term>Binary compound</term>
<term>Cadmium tellurides</term>
<term>Calibration</term>
<term>Copper selenides</term>
<term>Copper sulfide</term>
<term>Crystalline material</term>
<term>Gallium</term>
<term>IEC standard</term>
<term>Illumination</term>
<term>Indium selenides</term>
<term>Indium sulfide</term>
<term>Metastable state</term>
<term>Performance evaluation</term>
<term>Photovoltaic array</term>
<term>Power electronics</term>
<term>Preconditioning</term>
<term>Silicon</term>
<term>Stability limit</term>
<term>Stabilization</term>
<term>Standardization</term>
<term>Thin film</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Préconditionnement</term>
<term>Panneau solaire</term>
<term>Etalonnage</term>
<term>Etat métastable</term>
<term>Eclairement</term>
<term>Matériau amorphe</term>
<term>Stabilisation</term>
<term>Norme CEI</term>
<term>Electronique puissance</term>
<term>Seuil stabilité</term>
<term>Normalisation</term>
<term>Evaluation performance</term>
<term>Couche mince</term>
<term>Sulfure de cuivre</term>
<term>Sulfure d'indium</term>
<term>Séléniure d'indium</term>
<term>Séléniure de cuivre</term>
<term>Gallium</term>
<term>Tellurure de cadmium</term>
<term>Composé binaire</term>
<term>Silicium</term>
<term>Matériau cristallin</term>
<term>CuInSe2</term>
<term>CdTe</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Préconditionnement</term>
<term>Matériau amorphe</term>
<term>Normalisation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Thin-film module technologies are known for their metastability, and a study of this behaviour for different types of thin-film modules is presented. The modules investigated through a series of controlled light-soaking procedures are copper-indium sulfide (CIS), copper-indium-gallium diselenide (CIGS), cadmium telluride (CdTe), triple-junction amorphous silicon (a-Si), micromorph silicon (a-Si/μ-Si) and thin-film crystalline silicon (CSG). The objective of the paper is to investigate whether after the stabilization point, as defined in the international qualification standard IEC 61646, there is any further significant change in the maximum power of the module. It was found that all CIS and CIGS modules investigated in this study stabilize according to IEC 61646, and no further significant change in maximum power is observed. The same result was obtained also for the CSG module. To the contrary, CdTe, triple-junction a-Si and a-Si/μ-Si modules continued to show further change in maximum power even after they stabilize according to IEC 61646. For the purposes of module qualification, given the need to stay 'within reasonable constraints of cost and time', the stability procedure of IEC 61646 could be considered as satisfactory. However, in order to perform sufficient preconditioning of thin-film modules prior to precision calibration, a new more complete standard procedure is needed, tailored to the specific technology. For example, tighter stability limits lower than the current 2%, which would have the effect of increasing the number of light-soaking periods required.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1062-7995</s0>
</fA01>
<fA03 i2="1">
<s0>Prog. photovolt. : (Print)</s0>
</fA03>
<fA05>
<s2>22</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Preconditioning of thin-film PV module technologies for calibration</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KENNY (Robert P.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CHATZIPANAGI (Anatoli I.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SAMPLE (Tony)</s1>
</fA11>
<fA14 i1="01">
<s1>Renewable Energy Unit, Institute for Energy and Transport, European Commission, DG Joint Research Centre</s1>
<s2>Ispra</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>166-172</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>26755</s2>
<s5>354000500776930030</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>23 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0038068</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Progress in photovoltaics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Thin-film module technologies are known for their metastability, and a study of this behaviour for different types of thin-film modules is presented. The modules investigated through a series of controlled light-soaking procedures are copper-indium sulfide (CIS), copper-indium-gallium diselenide (CIGS), cadmium telluride (CdTe), triple-junction amorphous silicon (a-Si), micromorph silicon (a-Si/μ-Si) and thin-film crystalline silicon (CSG). The objective of the paper is to investigate whether after the stabilization point, as defined in the international qualification standard IEC 61646, there is any further significant change in the maximum power of the module. It was found that all CIS and CIGS modules investigated in this study stabilize according to IEC 61646, and no further significant change in maximum power is observed. The same result was obtained also for the CSG module. To the contrary, CdTe, triple-junction a-Si and a-Si/μ-Si modules continued to show further change in maximum power even after they stabilize according to IEC 61646. For the purposes of module qualification, given the need to stay 'within reasonable constraints of cost and time', the stability procedure of IEC 61646 could be considered as satisfactory. However, in order to perform sufficient preconditioning of thin-film modules prior to precision calibration, a new more complete standard procedure is needed, tailored to the specific technology. For example, tighter stability limits lower than the current 2%, which would have the effect of increasing the number of light-soaking periods required.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Préconditionnement</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Preconditioning</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Precondicionamiento</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Panneau solaire</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Photovoltaic array</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Panel solar</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Etalonnage</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Calibration</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Contraste</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Etat métastable</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Metastable state</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Estado metastable</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Eclairement</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Illumination</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Alumbrado</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Matériau amorphe</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Amorphous material</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Material amorfo</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Stabilisation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Stabilization</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Estabilización</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Norme CEI</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>IEC standard</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Norma IEC</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Electronique puissance</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Power electronics</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Electrónica potencia</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Seuil stabilité</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Stability limit</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Umbral estabilidad</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Normalisation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Standardization</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Normalización</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>22</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>22</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>22</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Sulfure de cuivre</s0>
<s5>23</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Copper sulfide</s0>
<s5>23</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Cobre sulfuro</s0>
<s5>23</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Sulfure d'indium</s0>
<s5>24</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Indium sulfide</s0>
<s5>24</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Indio sulfuro</s0>
<s5>24</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Séléniure d'indium</s0>
<s2>NK</s2>
<s5>25</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Indium selenides</s0>
<s2>NK</s2>
<s5>25</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Séléniure de cuivre</s0>
<s2>NK</s2>
<s5>26</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Copper selenides</s0>
<s2>NK</s2>
<s5>26</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Gallium</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>27</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Gallium</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>27</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Galio</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>27</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Tellurure de cadmium</s0>
<s2>NK</s2>
<s5>28</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Cadmium tellurides</s0>
<s2>NK</s2>
<s5>28</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Composé binaire</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Binary compound</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Compuesto binario</s0>
<s5>29</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Silicio</s0>
<s2>NC</s2>
<s5>30</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Matériau cristallin</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Crystalline material</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Material cristalino</s0>
<s5>31</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>CuInSe2</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>CdTe</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fN21>
<s1>041</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000054 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000054 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0038068
   |texte=   Preconditioning of thin-film PV module technologies for calibration
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024